BIAXIAL TENSION OF A THICK PLATE WITH
AN ELLIPTICAL HOLE, FROM AGING
ELASTIC-PLASTIC MATERIAL

F. B. Milyavskaya UDC 539.376

A model of an aging viscoplastic material is introduced in [1]. The yield point here
is an integral operator. The development of the plastic zone under biaxial tension is con-
sidered in this paper on the basis of the model in [1] for a plate with an elliptical hole
from aging material, The model of the material in the elastic-creep zone is taken according
to [2, 3].

Two approximations are obtained for the stress distribution by the small parameter
method [4], and the boundary of the plastic zone is determined, A numerical solution is
presented for the problem. An analogous problem is considered in [4] for an ideally elastic-
plastic body.

The relationships of the theory of a hereditarily aging plastic body, the equilibrium
equations, the incompressibility and isotropy conditions, and the hereditary plasticity condi-
tion, for plane strain have the form [1, 4]
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Here oyx(t), oy(t), rxy(t) are the stress components dependent on the time, ex, €y, exy are
the plastic strain rate components, k(t) is the variable yield point in time, and K*(t, t)
is the kernel of the hereditary operator.

1. Let us consider an infinite plane with an elliptical hole with the semi-axes a(l +
¢), a(l — c) extended by mutually perpendicular forces p;(t) and p.(t) at infinity, and let
the normal pressure po(t) act on the hole outline., We will set

¢ = dyb, (p,(t) — po(8))/2 = ds, ' (1.1)
where &8, d,, d; are constants taking on the following values in the limits:
0861, 0<d;, <1 (i=1,2). (1.2)

For d, = 0, d2 = 1 biaxial tension of a thick plate with a circular hole is evidently
observed [5], while for d; =1, d; = 0 we have a plate with an elliptical hole under normal pressure.

Let us go over to dimensionless parameters and variables while retaining the previous
notation. The yield point as t -+ « is denoted by ke and all the quantities with the dimen-
sionality of a stress are referred to ke, and those with the dimensionality of a length to
05 (°) (t) (the radius of the plastic zone in the zeroth approximation).

The equation of the ellipse in rectangular Cartesian coordinates in the notation accep-
ted has the form
2 [a*(1 - o] 4 y¥[a*(l — o] = 1. (1.3)

Let p, = p,(8) be the equation of the hole in polar coordinates. Going over to the polar
coordinates x = p,cos 6, y = p, sin 6, we convert (1.3) into
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We write two approximations in the parameter § for p,(8) from (1.4)
px (0) = a + ad 8 cos 20 — 2 a8%% (1 —cos40) + ... (1.5)

We assume that the inner outline is enclosed by the plastic zone. We determine the stress
components in the plastic and creep zones and the radius of the plastic zone pS(I)(t) in a
first approximation
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where of”, 0", 10§  are the stress components and n is the number of the approximation;
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The right sides in (1.6) vanish for the problem under consideration since py, = po(t) is
independent of p while p, = 0. The expressions for cp( ) and oe( ) are obtained in 15]

=ad, c0s20 according to (1.5)).
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Here and henceforth the superscript p is taken to denote the plastic zone and e the elastic-—
creep zone while ¢(t) is a function of the time [5].

For the first approximation the condition (0.3) has the form [5]
allP = 0P — 0. 1.9

Therefore, the boundary conditions (1.6), with (1.7)-(1.9) taken into account, are the fol-
lowing at the boundary p, = a

oy ? = — 2d k(t) @ (t)cos 20, oy = alPP,

1.1
TP = — 4d k () @ (¢) sin 26. (1.10)

Let us write the equation (0.1) in the polar coordinate system
90, | Gy—oy 07,
ap p P08

_ 1 da, atpe 2109__‘

=0, S5+ 50 +—22=0. (1.11)
Solving the differential equations (1.11) and taking account of (1.9) and (1.10), we obtain
expressions for the stress in the plastic zone in a first approximation

2ad -
oy = ——1 @ (&) k() (V3siny —cosy)Cos 28, ofF = o, ;
(1.12

r‘,?g"= 4——(p(t)k(t)cosxsin26 (x=V31a %).

Furthermore, let us consider the creep zone under boundary conditions at infinity in the
polar coordinate system

o5 = p(t) — bd,co820, o™ = p(t) + 8dycos 26,

(0)e . 1 (1.13)
e = 8d,5in20, p(t) = (P, () + Po (V).
From (1.13) for the first approximation
cf,{e.,,_ —d, 00820, 0%, = d,c0820, Toeies) = d,sin 26, (1.14)

and for the succeeding approximations
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0‘&'35)—0‘"35)—0 Thtey =0 (n=22). (1.15)

The stress distribution and the plastic zone boundary in the zeroth approximation cor-
respond to the axisymmetric state of a plane with a circular hole [5]
e Lk (1 k(¢
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Let us write down the conjugate condition for solutions for op(n) on the boundary p = 1.
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The conjugate conditions for the components o and T(g) have an analogous form [4]. Taking
account of (1.8) and (1.16), we obtain boundary conditions for p = 1 from the conditions
(1.17):
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The solution of the problem agrees identically with the solution for an elastic body [2] for
an incompressible elastic-creep material. According to [6], by taking account of the boun-
dary conditions (1.14) and (1.18) we find the stress distribution and radius of the plastic
zone in a first approximation:
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pll = (W + 2d, cos x*) cos 20.

2. The equilibrium equations in the polar coordinate system have the form (1.11). Let
us write the plasticity condition (0.3) in a second approximation [5] by taking the lower
limit of integration to, = 0O: V
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According to the linearized boundary conditions in a second approximation [4], and by taking
(1.7)-(1.9) and (1.12) into account, we obtain the boundary conditions on the boundary p = a
0P = d ¢k (2 — 9 cos 48), ThgF = — 6dipksin4. (2.2)

Taking account of (1.12) the plasticity condition (2.1) has the form
1
£ (0 O) + | Ky (1, 0, (5, py 8)dT=F* (0, 0) F (), (2.3)
0

where
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Equation (2.3) is a Volterra integral equation of the second kind (p and 6 are parameters),
its inversion is [7]

t
£t 0, 0) = F*(p, ) F() —A [ F*(p, )T (t, T, M F(x) dr (2.4)
1]

(I‘(t T, A) = 2 A Kyyy - is the resolvent kernel and A = ——1). We satisfy the equilibrium

equations by setting
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Substituting (2.5) into (2.3) and taking account of (2.4) we find a differential equation
to determine the stress function ®(IL):
p'.! a?q»)(ll) 620(") 620(11)

- — ——k 2.
TP o e k(&) f, (¢ o, 8). (2.6)

Solving (2.6) with the boundary conditions (2.2), we have the stress components in the plas-
tic zone in a second approximation from (2.5):

2
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Here p{(t) is the solution of the integral equation

t  av—
(O =FO—A[ K, (t,D9@dn k=k@): o=0() =V 151 (p/a).

Taking arcount of (1.8), (1.12), (1.19) and (2.7) we obtain boundary conditions for p = 1
from the conjugate conditions (1.17) (second formula)

alV*— A + Bcos4, 7 — Dsin40, (2.8)

where
A=d§k[( ‘p)_*_ a’p (4—V3sin2y* + cos 2¢* )]—-k(p( + 2ad, cos i )
—ad’k[( $— 9q:)cos? —V15( \p-—(p)siny‘]—
d 2
- —;— pa? (8 + 11 cos2y* — 7 Y 3sin2y*) — k(p(;% + 2ad, cos X') ;

D = 2ad% [(4p — 3p) cosy* + VI5(p — ) siny*] — a?dikp (1 + Tcos2y* +
+ V' 3sin2y*) — 4(,‘(p + 2ad, cos )(d. + 3ad kg cos x*);
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According to [6], we find the stress components from conditions (2.8) and then the radius of
the plastic zone in a second approximation
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3. We write the expression for the radius of the plastic zone from (1.16), (1.19) and
(2.9)

d, 2
Ps(t) = expy + 6<k—;oxpy + 2d, cos x") cos 20 - %.(Mcoslfﬁ + N). (3.1)
Let
1 —Bexp(—al) * () — 2B —B)exp(—a1)
b =—5"p— KO = Fear e
2
q)(t)=“_ﬂexP( at)) , po(t)____o'

t—p>
Di(t) = 5 — 3 exp (—0j1t), P, (1) = 4.6 — 3 exp (—0.1¢),
6=02,a=014,p=02,d, =d,=1.
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Analysis of the expression (3.1) shows that no relaxation occurs if y(t) is a growing
function. The hole outline (curve a) and the plastic zone boundary are displayed in Fig, 1
for different times, the lines 0-6 are the boundary location at the times with unit inter-
vals starting from the time of load inclusion, and 7 as t = «, The change pg(t) as a func-
tion of time is given in Fig. 2 for three directions (8 = 0, 6 = 7w/4, 8 = w/2 are the lines
1-3), the time changes from the time of load inclusion to infinity.
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